direct product, abelian, monomial, 2-elementary
Aliases: C22×C48, SmallGroup(192,935)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C22×C48 |
C1 — C22×C48 |
C1 — C22×C48 |
Generators and relations for C22×C48
G = < a,b,c | a2=b2=c48=1, ab=ba, ac=ca, bc=cb >
Subgroups: 98, all normal (16 characteristic)
C1, C2, C2, C3, C4, C4, C22, C6, C6, C8, C8, C2×C4, C23, C12, C12, C2×C6, C16, C2×C8, C22×C4, C24, C24, C2×C12, C22×C6, C2×C16, C22×C8, C48, C2×C24, C22×C12, C22×C16, C2×C48, C22×C24, C22×C48
Quotients: C1, C2, C3, C4, C22, C6, C8, C2×C4, C23, C12, C2×C6, C16, C2×C8, C22×C4, C24, C2×C12, C22×C6, C2×C16, C22×C8, C48, C2×C24, C22×C12, C22×C16, C2×C48, C22×C24, C22×C48
(1 146)(2 147)(3 148)(4 149)(5 150)(6 151)(7 152)(8 153)(9 154)(10 155)(11 156)(12 157)(13 158)(14 159)(15 160)(16 161)(17 162)(18 163)(19 164)(20 165)(21 166)(22 167)(23 168)(24 169)(25 170)(26 171)(27 172)(28 173)(29 174)(30 175)(31 176)(32 177)(33 178)(34 179)(35 180)(36 181)(37 182)(38 183)(39 184)(40 185)(41 186)(42 187)(43 188)(44 189)(45 190)(46 191)(47 192)(48 145)(49 121)(50 122)(51 123)(52 124)(53 125)(54 126)(55 127)(56 128)(57 129)(58 130)(59 131)(60 132)(61 133)(62 134)(63 135)(64 136)(65 137)(66 138)(67 139)(68 140)(69 141)(70 142)(71 143)(72 144)(73 97)(74 98)(75 99)(76 100)(77 101)(78 102)(79 103)(80 104)(81 105)(82 106)(83 107)(84 108)(85 109)(86 110)(87 111)(88 112)(89 113)(90 114)(91 115)(92 116)(93 117)(94 118)(95 119)(96 120)
(1 101)(2 102)(3 103)(4 104)(5 105)(6 106)(7 107)(8 108)(9 109)(10 110)(11 111)(12 112)(13 113)(14 114)(15 115)(16 116)(17 117)(18 118)(19 119)(20 120)(21 121)(22 122)(23 123)(24 124)(25 125)(26 126)(27 127)(28 128)(29 129)(30 130)(31 131)(32 132)(33 133)(34 134)(35 135)(36 136)(37 137)(38 138)(39 139)(40 140)(41 141)(42 142)(43 143)(44 144)(45 97)(46 98)(47 99)(48 100)(49 166)(50 167)(51 168)(52 169)(53 170)(54 171)(55 172)(56 173)(57 174)(58 175)(59 176)(60 177)(61 178)(62 179)(63 180)(64 181)(65 182)(66 183)(67 184)(68 185)(69 186)(70 187)(71 188)(72 189)(73 190)(74 191)(75 192)(76 145)(77 146)(78 147)(79 148)(80 149)(81 150)(82 151)(83 152)(84 153)(85 154)(86 155)(87 156)(88 157)(89 158)(90 159)(91 160)(92 161)(93 162)(94 163)(95 164)(96 165)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192)
G:=sub<Sym(192)| (1,146)(2,147)(3,148)(4,149)(5,150)(6,151)(7,152)(8,153)(9,154)(10,155)(11,156)(12,157)(13,158)(14,159)(15,160)(16,161)(17,162)(18,163)(19,164)(20,165)(21,166)(22,167)(23,168)(24,169)(25,170)(26,171)(27,172)(28,173)(29,174)(30,175)(31,176)(32,177)(33,178)(34,179)(35,180)(36,181)(37,182)(38,183)(39,184)(40,185)(41,186)(42,187)(43,188)(44,189)(45,190)(46,191)(47,192)(48,145)(49,121)(50,122)(51,123)(52,124)(53,125)(54,126)(55,127)(56,128)(57,129)(58,130)(59,131)(60,132)(61,133)(62,134)(63,135)(64,136)(65,137)(66,138)(67,139)(68,140)(69,141)(70,142)(71,143)(72,144)(73,97)(74,98)(75,99)(76,100)(77,101)(78,102)(79,103)(80,104)(81,105)(82,106)(83,107)(84,108)(85,109)(86,110)(87,111)(88,112)(89,113)(90,114)(91,115)(92,116)(93,117)(94,118)(95,119)(96,120), (1,101)(2,102)(3,103)(4,104)(5,105)(6,106)(7,107)(8,108)(9,109)(10,110)(11,111)(12,112)(13,113)(14,114)(15,115)(16,116)(17,117)(18,118)(19,119)(20,120)(21,121)(22,122)(23,123)(24,124)(25,125)(26,126)(27,127)(28,128)(29,129)(30,130)(31,131)(32,132)(33,133)(34,134)(35,135)(36,136)(37,137)(38,138)(39,139)(40,140)(41,141)(42,142)(43,143)(44,144)(45,97)(46,98)(47,99)(48,100)(49,166)(50,167)(51,168)(52,169)(53,170)(54,171)(55,172)(56,173)(57,174)(58,175)(59,176)(60,177)(61,178)(62,179)(63,180)(64,181)(65,182)(66,183)(67,184)(68,185)(69,186)(70,187)(71,188)(72,189)(73,190)(74,191)(75,192)(76,145)(77,146)(78,147)(79,148)(80,149)(81,150)(82,151)(83,152)(84,153)(85,154)(86,155)(87,156)(88,157)(89,158)(90,159)(91,160)(92,161)(93,162)(94,163)(95,164)(96,165), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192)>;
G:=Group( (1,146)(2,147)(3,148)(4,149)(5,150)(6,151)(7,152)(8,153)(9,154)(10,155)(11,156)(12,157)(13,158)(14,159)(15,160)(16,161)(17,162)(18,163)(19,164)(20,165)(21,166)(22,167)(23,168)(24,169)(25,170)(26,171)(27,172)(28,173)(29,174)(30,175)(31,176)(32,177)(33,178)(34,179)(35,180)(36,181)(37,182)(38,183)(39,184)(40,185)(41,186)(42,187)(43,188)(44,189)(45,190)(46,191)(47,192)(48,145)(49,121)(50,122)(51,123)(52,124)(53,125)(54,126)(55,127)(56,128)(57,129)(58,130)(59,131)(60,132)(61,133)(62,134)(63,135)(64,136)(65,137)(66,138)(67,139)(68,140)(69,141)(70,142)(71,143)(72,144)(73,97)(74,98)(75,99)(76,100)(77,101)(78,102)(79,103)(80,104)(81,105)(82,106)(83,107)(84,108)(85,109)(86,110)(87,111)(88,112)(89,113)(90,114)(91,115)(92,116)(93,117)(94,118)(95,119)(96,120), (1,101)(2,102)(3,103)(4,104)(5,105)(6,106)(7,107)(8,108)(9,109)(10,110)(11,111)(12,112)(13,113)(14,114)(15,115)(16,116)(17,117)(18,118)(19,119)(20,120)(21,121)(22,122)(23,123)(24,124)(25,125)(26,126)(27,127)(28,128)(29,129)(30,130)(31,131)(32,132)(33,133)(34,134)(35,135)(36,136)(37,137)(38,138)(39,139)(40,140)(41,141)(42,142)(43,143)(44,144)(45,97)(46,98)(47,99)(48,100)(49,166)(50,167)(51,168)(52,169)(53,170)(54,171)(55,172)(56,173)(57,174)(58,175)(59,176)(60,177)(61,178)(62,179)(63,180)(64,181)(65,182)(66,183)(67,184)(68,185)(69,186)(70,187)(71,188)(72,189)(73,190)(74,191)(75,192)(76,145)(77,146)(78,147)(79,148)(80,149)(81,150)(82,151)(83,152)(84,153)(85,154)(86,155)(87,156)(88,157)(89,158)(90,159)(91,160)(92,161)(93,162)(94,163)(95,164)(96,165), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192) );
G=PermutationGroup([[(1,146),(2,147),(3,148),(4,149),(5,150),(6,151),(7,152),(8,153),(9,154),(10,155),(11,156),(12,157),(13,158),(14,159),(15,160),(16,161),(17,162),(18,163),(19,164),(20,165),(21,166),(22,167),(23,168),(24,169),(25,170),(26,171),(27,172),(28,173),(29,174),(30,175),(31,176),(32,177),(33,178),(34,179),(35,180),(36,181),(37,182),(38,183),(39,184),(40,185),(41,186),(42,187),(43,188),(44,189),(45,190),(46,191),(47,192),(48,145),(49,121),(50,122),(51,123),(52,124),(53,125),(54,126),(55,127),(56,128),(57,129),(58,130),(59,131),(60,132),(61,133),(62,134),(63,135),(64,136),(65,137),(66,138),(67,139),(68,140),(69,141),(70,142),(71,143),(72,144),(73,97),(74,98),(75,99),(76,100),(77,101),(78,102),(79,103),(80,104),(81,105),(82,106),(83,107),(84,108),(85,109),(86,110),(87,111),(88,112),(89,113),(90,114),(91,115),(92,116),(93,117),(94,118),(95,119),(96,120)], [(1,101),(2,102),(3,103),(4,104),(5,105),(6,106),(7,107),(8,108),(9,109),(10,110),(11,111),(12,112),(13,113),(14,114),(15,115),(16,116),(17,117),(18,118),(19,119),(20,120),(21,121),(22,122),(23,123),(24,124),(25,125),(26,126),(27,127),(28,128),(29,129),(30,130),(31,131),(32,132),(33,133),(34,134),(35,135),(36,136),(37,137),(38,138),(39,139),(40,140),(41,141),(42,142),(43,143),(44,144),(45,97),(46,98),(47,99),(48,100),(49,166),(50,167),(51,168),(52,169),(53,170),(54,171),(55,172),(56,173),(57,174),(58,175),(59,176),(60,177),(61,178),(62,179),(63,180),(64,181),(65,182),(66,183),(67,184),(68,185),(69,186),(70,187),(71,188),(72,189),(73,190),(74,191),(75,192),(76,145),(77,146),(78,147),(79,148),(80,149),(81,150),(82,151),(83,152),(84,153),(85,154),(86,155),(87,156),(88,157),(89,158),(90,159),(91,160),(92,161),(93,162),(94,163),(95,164),(96,165)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192)]])
192 conjugacy classes
class | 1 | 2A | ··· | 2G | 3A | 3B | 4A | ··· | 4H | 6A | ··· | 6N | 8A | ··· | 8P | 12A | ··· | 12P | 16A | ··· | 16AF | 24A | ··· | 24AF | 48A | ··· | 48BL |
order | 1 | 2 | ··· | 2 | 3 | 3 | 4 | ··· | 4 | 6 | ··· | 6 | 8 | ··· | 8 | 12 | ··· | 12 | 16 | ··· | 16 | 24 | ··· | 24 | 48 | ··· | 48 |
size | 1 | 1 | ··· | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
192 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | + | + | |||||||||||||
image | C1 | C2 | C2 | C3 | C4 | C4 | C6 | C6 | C8 | C8 | C12 | C12 | C16 | C24 | C24 | C48 |
kernel | C22×C48 | C2×C48 | C22×C24 | C22×C16 | C2×C24 | C22×C12 | C2×C16 | C22×C8 | C2×C12 | C22×C6 | C2×C8 | C22×C4 | C2×C6 | C2×C4 | C23 | C22 |
# reps | 1 | 6 | 1 | 2 | 6 | 2 | 12 | 2 | 12 | 4 | 12 | 4 | 32 | 24 | 8 | 64 |
Matrix representation of C22×C48 ►in GL3(𝔽97) generated by
1 | 0 | 0 |
0 | 96 | 0 |
0 | 0 | 96 |
96 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
36 | 0 | 0 |
0 | 36 | 0 |
0 | 0 | 11 |
G:=sub<GL(3,GF(97))| [1,0,0,0,96,0,0,0,96],[96,0,0,0,1,0,0,0,1],[36,0,0,0,36,0,0,0,11] >;
C22×C48 in GAP, Magma, Sage, TeX
C_2^2\times C_{48}
% in TeX
G:=Group("C2^2xC48");
// GroupNames label
G:=SmallGroup(192,935);
// by ID
G=gap.SmallGroup(192,935);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-2,168,102,124]);
// Polycyclic
G:=Group<a,b,c|a^2=b^2=c^48=1,a*b=b*a,a*c=c*a,b*c=c*b>;
// generators/relations